Calcium signaling in mouse oocyte maturation: the roles of STIM1, ORAI1 and SOCE.
نویسندگان
چکیده
Calcium handling is critical for the oocyte function, since the first steps of fertilization are dependent on the appropriate Ca(2+) mobilization to originate transient spikes of the cytosolic Ca(2+) concentration. It is well known that the Ca(2+) influx from the extracellular milieu is required to maintain this signaling in mammalian oocytes. However, the regulation of the Ca(2+) channels involved in this process is still unknown in oocytes. STIM1, a key regulator of store-operated Ca(2+) entry (SOCE), relocates in the mouse oocyte shortly after sperm stimulation, suggesting that SOCE is involved in the maintenance of cytosolic Ca(2+)-spiking in the fertilized oocyte. Here, we show that there is an up-regulation of the expression of STIM1 at the germinal vesicle breakdown stage, and this expression remains steady during following maturation stages. We found that oocytes express ORAI1, a store-operated Ca(2+) channel, and that ORAI1 expression level was stable during oocyte maturation. Immature oocytes showed no Ca(2+) entry and no increase in STIM1-ORAI1 colocalization in response to the store depletion induced by thapsigargin. On the contrary, in mature oocytes, STIM1-ORAI1 colocalization is enhanced 3-fold by depletion of Ca(2+) stores, enabling the activation of store-operated calcium channels and therefore Ca(2+) entry. Finally, the correlation between SOCE activation during the maturation of oocytes and STIM1-ORAI1 colocalization strongly suggests that ORAI1 is involved in the Ca(2+) entry pathway in the mature oocyte. SOCE up-regulation in the final stage of maturation is further evidence of a major role for SOCE in fully mature oocytes, and therefore in Ca(2+) signaling at fertilization.
منابع مشابه
Downregulation of store-operated Ca2+ entry during mammalian meiosis is required for the egg-to-embryo transition.
A specialized Ca(2+) transient at fertilization represents the universal driver for the egg-to-embryo transition. Ca(2+) signaling remodels during oocyte maturation to endow the egg with the capacity to produce the specialized Ca(2+) transient at fertilization, which takes the form of a single (e.g. Xenopus) or multiple (e.g. mouse) Ca(2+) spikes depending on the species. Store-operated Ca(2+) ...
متن کاملCa2+ influx and the store-operated Ca2+ entry pathway undergo regulation during mouse oocyte maturation
In preparation for fertilization, mammalian oocytes undergo optimization of the mechanisms that regulate calcium homeostasis. Among these changes is the increase in the content of the Ca(2+) stores ([Ca(2+)]ER), a process that requires Ca(2+) influx. Nevertheless, the mechanism(s) that mediates this influx remains obscure, although is known that [Ca(2+)]ER can regulate Ca(2+) influx via store-o...
متن کاملThe Orai-1 and STIM-1 Complex Controls Human Dendritic Cell Maturation
Ca(2+) signaling plays an important role in the function of dendritic cells (DC), the professional antigen presenting cells. Here, we described the role of Calcium released activated (CRAC) channels in the maturation and cytokine secretion of human DC. Recent works identified STIM1 and Orai1 in human T lymphocytes as essential for CRAC channel activation. We investigated Ca(2+) signaling in hum...
متن کاملDifferential Roles for STIM1 and STIM2 in Store-Operated Calcium Entry in Rat Neurons
The interaction between Ca(2+) sensors STIM1 and STIM2 and Ca(2+) channel-forming protein ORAI1 is a crucial element of store-operated calcium entry (SOCE) in non-excitable cells. However, the molecular mechanism of SOCE in neurons remains unclear. We addressed this issue by establishing the presence and function of STIM proteins. Real-time polymerase chain reaction from cortical neurons showed...
متن کاملSTIM1 Phosphorylation at Y361 Recruits Orai1 to STIM1 Puncta and Induces Ca2+ Entry
Store-operated Ca2+ entry (SOCE) mediates the increase in intracellular calcium (Ca2+) in endothelial cells (ECs) that regulates several EC functions including tissue-fluid homeostasis. Stromal-interaction molecule 1 (STIM1), upon sensing the depletion of (Ca2+) from the endoplasmic reticulum (ER) store, organizes as puncta that trigger store-operated Ca2+ entry (SOCE) via plasmalemmal Ca2+-sel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular human reproduction
دوره 18 4 شماره
صفحات -
تاریخ انتشار 2012